Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system
نویسندگان
چکیده
Non-smooth dynamics of a cantilever beam subjected to a transverse harmonic force and impacting onto a soft obstacle is studied. Upon formulating the equations of motion of the beam, proper attention is paid to identifying the mechanical properties of an equivalent single-degree-of-freedom (SDOF) piecewise linear impacting model. A multi-degree-of-freedom (MDOF) model of the impacting beam is also derived via standard finite elements. An ‘optimal’ identification curve of the obstacle spring rigidities in the two models is obtained by comparing the relevant pseudo-resonance frequencies. The identification is then exploited in the non-linear dynamic regime to get hints on some main, mostly regular, features of non-linear dynamic response of the impacting beam by the actual investigation of the behaviour of the sole equivalent SDOF model, with a definitely lower computational effort. Sample regular and non-regular responses of the MDOF model are also presented where the identification does not work. Overall, useful points are made as regards the possibility and the limitations of referring to an SDOF impacting model to investigate the non-linear response of the underlying infinitedimensional system. PACS-1998 classification codes: 02.30.Hq, 46.10.þz, 46.30.Pa
منابع مشابه
Three-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method
In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...
متن کاملPower optimization of a piezoelectric-based energy harvesting cantilever beam using surrogate model
Energy harvesting is a conventional method to collect the dissipated energy of a system. In this paper, we investigate the optimal location of a piezoelectric element to harvest maximum power concerning different excitation frequencies of a vibrating cantilever beam. The cantilever beam oscillates by a concentrated sinusoidal tip force, and a piezoelectric patch is integrated on the beam to gen...
متن کاملModeling and modal analysis to oscillations of IPMC cantilever beam and simulating as an actuator
The purpose of this article is modal analysis of ionic polymer metal composite beams, then briefing the system to the unique parameters to help in up modeling of the actuator. In this paper at first using of Mathematical analysis and Closed form transfer function of cantilever beam dynamic response to the forces of different inputs (intensive and continuous) is calculated and for different type...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملTracking and Shape Control of a Micro-cantilever using Electrostatic Actuation
In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011